sábado, 6 de dezembro de 2008

A FÓRMULA QUADRÁTICA DE SRIDHARA(BHASKARA)


Mostraremos na sequência como o matemático Sridhara, obteve a Fórmula (conhecida como sendo) de Bhaskara, que é a fórmula geral para a resolução de equações do segundo grau. Um fato curioso é que a Fórmula de Bhaskara não foi descoberta por ele mas pelo matemático hindu Sridhara, pelo menos um século antes da publicação de Bhaskara, fato reconhecido pelo próprio Bhaskara, embora o material construído pelo pioneiro não tenha chegado até nós.

O fundamento usado para obter esta fórmula foi buscar uma forma de reduzir a equação do segundo grau a uma do primeiro grau, através da extração de raízes quadradas de ambos os membros da mesma.

Seja a equação:
a x² + b x + c = 0

Com a não nulo e dividindo todos os coeficientes por a, temos:
x² + (b/a) x + c/a = 0

Passando o termo constante para o segundo membro, teremos:
x² + (b/a) x = -c/a

Prosseguindo, faremos com que o lado esquerdo da equação seja um quadrado perfeito e para isto somaremos o quadrado de b/2a a ambos os membros da equação para obter:
x² + (b/a) x + (b/2a)² = -c/a + (b/2a)²

Simplificando ambos os lados da equação, obteremos:
[x+(b/2a)]2 = (b² - 4ac) / 4a²

Notação: Usaremos a notação R[x] para representar a raiz quadrada de x>0. R[5] representará a raiz quadrada de 5. Esta notação está sendo introduzida aqui para fazer com que a página seja carregada mais rapidamente, pois a linguagem HTML ainda não permite apresentar notações matemáticas na Internet de uma forma fácil.

Extraindo a raiz quadrada de cada membro da equação e lembrando que a raiz quadrada de todo número real não negativo é também não negativa, obteremos duas respostas para a nossa equação:
x + (b/2a) = + R[(b²-4ac) / 4a²]

OU

x + (b/2a) = - R[(b²-4ac) / 4a²]

que alguns, por preguiça ou descuido, escrevem:


contendo um sinal ± que é lido como mais ou menos. Lembramos que este sinal ± não tem qualquer significado em Matemática.

Como estamos procurando duas raízes para a equação do segundo grau, deveremos sempre escrever:
x' = -b/2a + R[b²-4ac] /2a

OU

x" = -b/2a - R[b²-4ac] /2a

A fórmula de Bhaskara ainda pode ser escrita como:



Onde D (às vezes usamos a letra maiúscula "delta" do alfabeto grego) é o discriminante da equação do segundo grau, definido por:
D = b² - 4ac

Nenhum comentário:

Postar um comentário